Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I.

نویسندگان

  • Huisheng Liu
  • Camin Dean
  • Christopher P Arthur
  • Min Dong
  • Edwin R Chapman
چکیده

Synaptotagmin-I (syt-I) is required for rapid neurotransmitter release in mouse hippocampal neurons. However, contradictory results have been reported regarding evoked and spontaneous secretion from syt-I knock-out (KO) neurons. Here, we compared synaptic transmission in two different hippocampal neuron preparations: autaptic cultures in which a single isolated cell innervates itself, and dissociated mass cultures in which individual cells are innervated by neighboring cells. In autaptic cultures, the total extent of evoked release, size of readily releasable pool of synaptic vesicles, and release probability were unchanged in syt-I KO neurons. In contrast, in cultures containing multiple interconnected neurons, total evoked release, the number of docked vesicles, and release probability, were significantly reduced in syt-I KO neurons. Using a micronetwork system in which we varied the number of cells on an island, we found that the frequency of spontaneous synaptic vesicle fusion events (minis) was unchanged in syt-I KO neurons when two or fewer cells were present on an island. However, in micronetworks composed of three or more neurons, mini frequency was increased threefold to fivefold in syt-I KO neurons compared with wild type. Moreover, interneuronal synapses exhibited higher rates of spontaneous release than autaptic synapses. This higher rate was attributable to an increase in release probability because excitatory hippocampal neurons in micronetworks formed a set number of synapses per cell regardless of the number of connected neurons. Thus, aspects of synaptic transmission differ between autaptic and dissociated cultures, and the synaptic transmission phenotype, resulting from loss of syt-I, is dictated by the connectivity of neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinctive quantal properties of neurotransmission at excitatory and inhibitory autapses revealed using variance-mean analysis.

Normal brain function depends on an interplay between glutamatergic and GABAergic synaptic transmission, yet questions remain about the biophysical differences between these two classes of synapse. By taking advantage of a simple culture system, we present here a detailed comparison of excitatory and inhibitory neurotransmission under identical conditions using the variance-mean (V-M) method of...

متن کامل

بررسی اثر تحمل دارویی ناشی از مصرف مزمن مرفین و سالیسیلات بر شکل پذیری سیناپسی

Background & Aim: Salicylates and opioids are widely used in chronic pain relief. Chronic use of these drugs reorganizes synaptic function, especially experience-dependent plasticity in brain regions. Therefore, in this study the effects of chronic administration of salicylate and morphine on synaptic plasticity were investigated. Methods: in this review, Elsevier, Science Direct, PubMed and G...

متن کامل

Ethanol impairs memory by reducing the synaptic connection of the hippocampal spatial neurons

Background and Objective: Ethanol has undesirable effects on memory and synaptic communication. However, its impact on the learned spatial memory is unclear. We investigated the damaging effects of ethanol on place neurons of rat’s hippocampal CA1.Materials and Methods: Sixty four male Wistar rats (250 g) were administered high (1-8 g/kg) or low (0.05-0.1 g/kg) doses of ethanol intraperit...

متن کامل

Developmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats

Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 23  شماره 

صفحات  -

تاریخ انتشار 2009